Flame Ignition and Particulate Formation in Oxy-Coal Combustion Systems

Jost O.L. Wendt, Jingwei Zhang, Will Morris, Dunxi Yu, Kerry Kelly, Eric G. Eddings

University of Utah, Salt Lake City, UT 84112

Presented at ACERC Meeting, Brigham Young University, Provo, Utah Feb 25th and 26th, 2010

Oxy-Coal Combustion (short term research needs):

Schematic of oxygen fired PC furnace with CO₂ recycle (adapted Sarofim et al, 2004)

Oxy-coal research at the University of Utah using a 100kW (nominal) down-fired oxy-fuel combustor (OFC)

- 1. Flame ignition studies
 - a) Focus on mechanisms of interaction between turbulent mixing in co-axial flows and coal ignition mechanisms
 - b) Effect of P_{O2} , and substitution of CO_2 by N_2 in *primary* fuel stream.
 - c) Effect of P₀₂ and preheat in *secondary* oxidant stream
- 2. Ultra-fine particles, soot, LOI and ash
 - a) Ultra-fine particles, soot and carbon
 - How does oxy-coal firing affect soot and ultra-fine particle formation?
 - Relationship between ultra-fine PSD, soot and LOI
 - b) Ash partitioning studies
 - How does oxy-coal firing affect ash aerosol size segregated composition and morphology

1. Flame ignition studies

- Determine, in a systematic manner, how burner operating parameters and oxygen partial pressure influence flame stability and coal ignition.
- Explore effects of variations in the partial pressure of O₂ and CO₂ on coal jet ignition and flame stability(specific objective of this work).
- Systematically investigate near-burner aerodynamics and ignition zone for Type 0 axial diffusion flames (no swirl)
- Develop technique to quantify coal flame length or stand-off distance from photo-images to allow quantitative comparison with simulations, together with uncertainty quantification.

ΟΓΙΙΤΑΗ

Definition and quantification of flame stand-off distance

Depends on camera shutter speed (and, in practice, on the averaging process of the human eye)

Flame images of different flames collected with different cameras/settings showing the effect of improved temporal resolution (left to right). Frames A1 and A2, collected with an EPIX CMOS camera SV5C10, show an exposure time of 8.3ms and a collection rate of 30 frames per second (fps). Frames B1 and B2, collected with a Nikon DSLR camera D5000, show an exposure time of 0.25 ms and a collection rate of 4 fps, while Frame C, collected with a Photron high speed camera, HE shows an exposure time of 5µs and a collection rate of at 5000 fps.

P_{O2(pri)} = 0.0

0.099

0.144

THE UNIVERSITY OF UTAH Example of PDF: O_2/CO_2 + Utah Bituminous, overall P_{O2} = 40%, secondary preheat T = 489 K, T_{wall} = 1283 K, primary P_{O2} = 0.144

Example of PDF: O_2/CO_2 + Utah Bituminous, overall P_{O2} = 40%, secondary preheat T = 489 K, T_{wall} = 1283 K, primary P_{O2} = 0.207

The effect of **secondary** P_{O2} on **average** standoff distance.

The error bars presented for 40%, 44% and 48% overall inlet P_{02} are too small to be visible.

UNIVERSITY OF UTAH

Average stand-off distance vs. primary P₀₂: a comparison between primary O₂/CO₂ mixture and primary O₂/N₂ mixture.

The error bars presented for O_2/CO_2 -489K case are too small to be visible.

2. Effect of oxy-coal combustion conditions on soot, UBC, ultra-fine particles and ash

- Two coals each burned in
 - Air
 - 27%O₂/73%CO₂
 - 32%O₂/68%CO₂
- Dilute exhaust sample
 - 0%, 1%, 2%, 3% O₂ in exhaust
 - Measure "black carbon" using photo-acoustic analyzer (PA)
 - Measure PSD of ultra-fine particulates using Scanning Mobility Particle Sizer (SMPS)
- Total ash sample
 - 0%, 1%, 2%, 3% O₂ in exhaust
 - Measure loss on ignition (LOI)
- Size segregated ash composition, 3% O₂ in exhaust only
 - Diluted, quenched, isokinetic sample
 - Low pressure impactor (LPI
 - Gravimetric PSD
 - Elemental composition by both EDS and digestion followed by ICP

Let us first look at soot: Typical PA temporal profile

Utah air fired results: soot vs $%O_2$ in flue

Soot: Air fired vs oxyfired

PA Utah Skyline averaged results

Ultra-fine SMPS mass distributions: Air vs oxy-firing Utah Skyline

Integrated SMPS mass concentration (15-615nm)

Utah Skyline

Air and oxy-firing: BC (soot) vs LOI

Air vs Oxy-firing, particle size distributions, Gravimetrically obtained from LPI samples

Total ash compositions

Utah Skyline Bituminous Coal

Powder River Basin Black Thunder Sub-bituminous Coal

Utah Skyline: Size segregated ash compositions

EDS analsyses

Conclusions

- Ignition studies
 - Quantified flame attachment
 - Quantified effects of primary O₂, secondary O₂, secondary preheat and primary transporting fluid.
 - Provided insight into mechanism of interaction between turbulent mixing and ignition mechanisms.
 - Provided validation data with error quantification for simulations (still in progress)
- Fine particle, soot and ash studies
 - Air firing produces more soot than oxy-firing under similar adiabatic temperature and gas radiation heat flux conditions
 - At low %O₂ in exhaust, ultrafine particles from coal combustion consist largely of soot. PA and SMPS measurements are consistent.
 - At 3% O₂ oxy coal firing appeared to have higher LOI than air firing, with matched adiabatic temperature or gas radiation heat flux.
 - Oxy-coal ashes enriched in SO₃ but depleted in Ca, otherwise not very different. Ca may be deposited because of lower velocities.

THE UNIVERSITY OF UTAH

Acknowledgments

- This material is based upon work supported by the Department of Energy under Award Number FC26-08NT0005015 and Co-operative Agreement Number DE-NT0005288 to Reaction Engineering International (Prime Contractor)
- Praxair Inc. for providing O₂ and CO₂.
- Lawrence E. Bool, III, Praxair, for technical input.
- University of Utah for initial financial support.
- Technical Staff: Ryan Okerlund, Brian Nelson, David Wagner
- Undergraduate assistants: Dallin Call, Raphael Ericson, Charles German

